MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. Grade 16 Titanium

S41425 stainless steel belongs to the iron alloys classification, while grade 16 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is grade 16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
23
Fatigue Strength, MPa 450
240
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
34
Shear Modulus, GPa 77
38
Shear Strength, MPa 570
250
Tensile Strength: Ultimate (UTS), MPa 920
400
Tensile Strength: Yield (Proof), MPa 750
340

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 810
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 10
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.2

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 2.9
36
Embodied Energy, MJ/kg 40
600
Embodied Water, L/kg 120
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 33
25
Strength to Weight: Bending, points 27
27
Thermal Diffusivity, mm2/s 4.4
8.9
Thermal Shock Resistance, points 33
29

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 12 to 15
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 74 to 81.9
0 to 0.3
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 4.0 to 7.0
0
Nitrogen (N), % 0.060 to 0.12
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
98.8 to 99.96
Residuals, % 0
0 to 0.4