MakeItFrom.com
Menu (ESC)

S42010 Stainless Steel vs. EN 1.8864 Steel

Both S42010 stainless steel and EN 1.8864 steel are iron alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42010 stainless steel and the bottom bar is EN 1.8864 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
22
Fatigue Strength, MPa 220
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 370
380
Tensile Strength: Ultimate (UTS), MPa 590
610
Tensile Strength: Yield (Proof), MPa 350
460

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 800
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 29
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
2.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
1.7
Embodied Energy, MJ/kg 30
22
Embodied Water, L/kg 110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
120
Resilience: Unit (Modulus of Resilience), kJ/m3 310
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 7.9
10
Thermal Shock Resistance, points 21
18

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.15 to 0.3
0 to 0.18
Chromium (Cr), % 13.5 to 15
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 80.9 to 85.6
95.1 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0.4 to 0.85
0 to 0.5
Nickel (Ni), % 0.35 to 0.85
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050