MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. 4115 Aluminum

S42030 stainless steel belongs to the iron alloys classification, while 4115 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 16
1.1 to 11
Fatigue Strength, MPa 250
39 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 410
71 to 130
Tensile Strength: Ultimate (UTS), MPa 670
120 to 220
Tensile Strength: Yield (Proof), MPa 410
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 780
160
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 28
160
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
41
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.1
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 110
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 440
11 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
12 to 23
Strength to Weight: Bending, points 22
20 to 30
Thermal Diffusivity, mm2/s 7.7
66
Thermal Shock Resistance, points 24
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 0
94.6 to 97.4
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 2.0 to 3.0
0.1 to 0.5
Iron (Fe), % 77.6 to 85
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.8 to 2.2
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15