MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. EN 1.8832 Steel

Both S42030 stainless steel and EN 1.8832 steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is EN 1.8832 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16
25
Fatigue Strength, MPa 250
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 410
340
Tensile Strength: Ultimate (UTS), MPa 670
530
Tensile Strength: Yield (Proof), MPa 410
390

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 780
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 28
49
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.6
Embodied Energy, MJ/kg 34
21
Embodied Water, L/kg 110
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
120
Resilience: Unit (Modulus of Resilience), kJ/m3 440
410
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 7.7
13
Thermal Shock Resistance, points 24
16

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.030
Carbon (C), % 0 to 0.3
0 to 0.14
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 77.6 to 85
96.8 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.6
Molybdenum (Mo), % 1.0 to 3.0
0 to 0.2
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.1