MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. C64800 Bronze

S42030 stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 16
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 410
380
Tensile Strength: Ultimate (UTS), MPa 670
640
Tensile Strength: Yield (Proof), MPa 410
630

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 780
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 28
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
65
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
66

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 34
43
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
51
Resilience: Unit (Modulus of Resilience), kJ/m3 440
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 7.7
75
Thermal Shock Resistance, points 24
23

Alloy Composition

Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 12 to 14
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 2.0 to 3.0
92.4 to 98.8
Iron (Fe), % 77.6 to 85
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.5
Silicon (Si), % 0 to 1.0
0.2 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5