MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. R56406 Titanium

S42030 stainless steel belongs to the iron alloys classification, while R56406 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16
9.1
Fatigue Strength, MPa 250
480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 670
980
Tensile Strength: Yield (Proof), MPa 410
850

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 780
340
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 28
7.1
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.5
38
Embodied Energy, MJ/kg 34
610
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
85
Resilience: Unit (Modulus of Resilience), kJ/m3 440
3420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
61
Strength to Weight: Bending, points 22
49
Thermal Diffusivity, mm2/s 7.7
2.8
Thermal Shock Resistance, points 24
69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.3
0 to 0.1
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 2.0 to 3.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 77.6 to 85
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 3.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5