MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. S17600 Stainless Steel

Both S42030 stainless steel and S17600 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 16
8.6 to 11
Fatigue Strength, MPa 250
300 to 680
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 410
560 to 880
Tensile Strength: Ultimate (UTS), MPa 670
940 to 1490
Tensile Strength: Yield (Proof), MPa 410
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
550
Maximum Temperature: Mechanical, °C 780
890
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.5
2.9
Embodied Energy, MJ/kg 34
42
Embodied Water, L/kg 110
130

Common Calculations

PREN (Pitting Resistance) 20
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 440
850 to 4390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
34 to 54
Strength to Weight: Bending, points 22
28 to 37
Thermal Diffusivity, mm2/s 7.7
4.1
Thermal Shock Resistance, points 24
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.3
0 to 0.080
Chromium (Cr), % 12 to 14
16 to 17.5
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 77.6 to 85
71.3 to 77.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 0
6.0 to 7.5
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.4 to 1.2