MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. S20433 Stainless Steel

Both S42030 stainless steel and S20433 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 16
46
Fatigue Strength, MPa 250
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 410
440
Tensile Strength: Ultimate (UTS), MPa 670
630
Tensile Strength: Yield (Proof), MPa 410
270

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 390
410
Maximum Temperature: Mechanical, °C 780
900
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 34
39
Embodied Water, L/kg 110
150

Common Calculations

PREN (Pitting Resistance) 20
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
230
Resilience: Unit (Modulus of Resilience), kJ/m3 440
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 7.7
4.0
Thermal Shock Resistance, points 24
14

Alloy Composition

Carbon (C), % 0 to 0.3
0 to 0.080
Chromium (Cr), % 12 to 14
17 to 18
Copper (Cu), % 2.0 to 3.0
1.5 to 3.5
Iron (Fe), % 77.6 to 85
64.1 to 72.4
Manganese (Mn), % 0 to 1.0
5.5 to 7.5
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030