MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. AISI 310Cb Stainless Steel

Both S42035 stainless steel and AISI 310Cb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 69% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is AISI 310Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
39
Fatigue Strength, MPa 260
200
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 76
84
Shear Modulus, GPa 77
78
Shear Strength, MPa 390
390
Tensile Strength: Ultimate (UTS), MPa 630
580
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 470
520
Maximum Temperature: Mechanical, °C 810
1100
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.4
4.8
Embodied Energy, MJ/kg 34
69
Embodied Water, L/kg 110
190

Common Calculations

PREN (Pitting Resistance) 17
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 460
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 7.2
3.9
Thermal Shock Resistance, points 22
13

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 13.5 to 15.5
24 to 26
Iron (Fe), % 78.1 to 85
47.2 to 57
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.3 to 0.5
0