MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. AISI 440C Stainless Steel

Both S42035 stainless steel and AISI 440C stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
2.0 to 14
Fatigue Strength, MPa 260
260 to 840
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 390
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 630
710 to 1970
Tensile Strength: Yield (Proof), MPa 430
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 470
390
Maximum Temperature: Mechanical, °C 810
870
Melting Completion (Liquidus), °C 1450
1480
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
22
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.2
Embodied Energy, MJ/kg 34
31
Embodied Water, L/kg 110
120

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
39 to 88
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
26 to 71
Strength to Weight: Bending, points 21
23 to 46
Thermal Diffusivity, mm2/s 7.2
6.0
Thermal Shock Resistance, points 22
26 to 71

Alloy Composition

Carbon (C), % 0 to 0.080
1.0 to 1.2
Chromium (Cr), % 13.5 to 15.5
16 to 18
Iron (Fe), % 78.1 to 85
78 to 83.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.2 to 1.2
0 to 0.75
Nickel (Ni), % 1.0 to 2.5
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.3 to 0.5
0