MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. ASTM A182 Grade F122

Both S42035 stainless steel and ASTM A182 grade F122 are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
23
Fatigue Strength, MPa 260
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 390
450
Tensile Strength: Ultimate (UTS), MPa 630
710
Tensile Strength: Yield (Proof), MPa 430
450

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Mechanical, °C 810
600
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1400
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
24
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.4
3.0
Embodied Energy, MJ/kg 34
44
Embodied Water, L/kg 110
100

Common Calculations

PREN (Pitting Resistance) 17
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 460
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 7.2
6.4
Thermal Shock Resistance, points 22
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.080
0.070 to 0.14
Chromium (Cr), % 13.5 to 15.5
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Iron (Fe), % 78.1 to 85
81.3 to 87.7
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 0.2 to 1.2
0.25 to 0.6
Nickel (Ni), % 1.0 to 2.5
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.3 to 0.5
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010