MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. EN 1.0487 Steel

Both S42035 stainless steel and EN 1.0487 steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is EN 1.0487 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
27
Fatigue Strength, MPa 260
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 390
280
Tensile Strength: Ultimate (UTS), MPa 630
440
Tensile Strength: Yield (Proof), MPa 430
280

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 810
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
49
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.5
Embodied Energy, MJ/kg 34
20
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 460
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 7.2
13
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.080
0 to 0.16
Chromium (Cr), % 13.5 to 15.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78.1 to 85
96.6 to 99.38
Manganese (Mn), % 0 to 1.0
0.6 to 1.5
Molybdenum (Mo), % 0.2 to 1.2
0 to 0.080
Nickel (Ni), % 1.0 to 2.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.3 to 0.5
0 to 0.030
Vanadium (V), % 0
0 to 0.050