MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. EN 1.4107 Stainless Steel

Both S42035 stainless steel and EN 1.4107 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
18 to 21
Fatigue Strength, MPa 260
260 to 350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 630
620 to 700
Tensile Strength: Yield (Proof), MPa 430
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 470
390
Maximum Temperature: Mechanical, °C 810
740
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
27
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.1
Embodied Energy, MJ/kg 34
30
Embodied Water, L/kg 110
100

Common Calculations

PREN (Pitting Resistance) 17
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 460
420 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
22 to 25
Strength to Weight: Bending, points 21
21 to 22
Thermal Diffusivity, mm2/s 7.2
7.2
Thermal Shock Resistance, points 22
22 to 25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 13.5 to 15.5
11.5 to 12.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78.1 to 85
83.8 to 87.2
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0.2 to 1.2
0 to 0.5
Nickel (Ni), % 1.0 to 2.5
0.8 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0.3 to 0.5
0
Vanadium (V), % 0
0 to 0.080