MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. S20161 Stainless Steel

Both S42035 stainless steel and S20161 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
250
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
46
Fatigue Strength, MPa 260
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 390
690
Tensile Strength: Ultimate (UTS), MPa 630
980
Tensile Strength: Yield (Proof), MPa 430
390

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Corrosion, °C 470
410
Maximum Temperature: Mechanical, °C 810
870
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 27
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 7.8
7.5
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 34
39
Embodied Water, L/kg 110
130

Common Calculations

PREN (Pitting Resistance) 17
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
360
Resilience: Unit (Modulus of Resilience), kJ/m3 460
390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 22
36
Strength to Weight: Bending, points 21
29
Thermal Diffusivity, mm2/s 7.2
4.0
Thermal Shock Resistance, points 22
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 13.5 to 15.5
15 to 18
Iron (Fe), % 78.1 to 85
65.6 to 73.9
Manganese (Mn), % 0 to 1.0
4.0 to 6.0
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
3.0 to 4.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0.3 to 0.5
0