MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. S32003 Stainless Steel

Both S42035 stainless steel and S32003 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 260
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
79
Shear Strength, MPa 390
480
Tensile Strength: Ultimate (UTS), MPa 630
730
Tensile Strength: Yield (Proof), MPa 430
510

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 470
430
Maximum Temperature: Mechanical, °C 810
1010
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
15
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
3.0
Embodied Energy, MJ/kg 34
42
Embodied Water, L/kg 110
150

Common Calculations

PREN (Pitting Resistance) 17
29
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 460
660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 7.2
4.0
Thermal Shock Resistance, points 22
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 15.5
19.5 to 22.5
Iron (Fe), % 78.1 to 85
68.2 to 75.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.2 to 1.2
1.5 to 2.0
Nickel (Ni), % 1.0 to 2.5
3.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0.3 to 0.5
0