MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. C36000 Brass

S42300 stainless steel belongs to the iron alloys classification, while C36000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 9.1
5.8 to 23
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
39
Shear Strength, MPa 650
210 to 310
Tensile Strength: Ultimate (UTS), MPa 1100
330 to 530
Tensile Strength: Yield (Proof), MPa 850
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 750
120
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
89 to 340
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 39
11 to 18
Strength to Weight: Bending, points 30
13 to 18
Thermal Diffusivity, mm2/s 6.8
37
Thermal Shock Resistance, points 40
11 to 18

Alloy Composition

Carbon (C), % 0.27 to 0.32
0
Chromium (Cr), % 11 to 12
0
Copper (Cu), % 0
60 to 63
Iron (Fe), % 82 to 85.1
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Manganese (Mn), % 1.0 to 1.4
0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
32.5 to 37.5
Residuals, % 0
0 to 0.5