MakeItFrom.com
Menu (ESC)

S43037 Stainless Steel vs. EN 1.4008 Stainless Steel

Both S43037 stainless steel and EN 1.4008 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S43037 stainless steel and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
17
Fatigue Strength, MPa 160
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 410
670
Tensile Strength: Yield (Proof), MPa 230
500

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 510
390
Maximum Temperature: Mechanical, °C 880
760
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
25
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
8.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.1
Embodied Energy, MJ/kg 32
30
Embodied Water, L/kg 120
100

Common Calculations

PREN (Pitting Resistance) 18
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
6.7
Thermal Shock Resistance, points 14
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 16 to 19
12 to 13.5
Iron (Fe), % 77.9 to 83.9
81.8 to 86.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0.1 to 1.0
0