MakeItFrom.com
Menu (ESC)

S43037 Stainless Steel vs. EN 1.4922 Stainless Steel

Both S43037 stainless steel and EN 1.4922 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S43037 stainless steel and the bottom bar is EN 1.4922 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
16
Fatigue Strength, MPa 160
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 260
470
Tensile Strength: Ultimate (UTS), MPa 410
770
Tensile Strength: Yield (Proof), MPa 230
550

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 510
380
Maximum Temperature: Mechanical, °C 880
720
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
24
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
7.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 32
40
Embodied Water, L/kg 120
100

Common Calculations

PREN (Pitting Resistance) 18
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
27
Strength to Weight: Bending, points 16
24
Thermal Diffusivity, mm2/s 6.7
6.5
Thermal Shock Resistance, points 14
27

Alloy Composition

Carbon (C), % 0 to 0.030
0.17 to 0.23
Chromium (Cr), % 16 to 19
10 to 12.5
Iron (Fe), % 77.9 to 83.9
83.5 to 88.2
Manganese (Mn), % 0 to 1.0
0.3 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.1 to 1.0
0
Vanadium (V), % 0
0.2 to 0.35