MakeItFrom.com
Menu (ESC)

S43037 Stainless Steel vs. EN 1.8835 Steel

Both S43037 stainless steel and EN 1.8835 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S43037 stainless steel and the bottom bar is EN 1.8835 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
21
Fatigue Strength, MPa 160
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 260
360
Tensile Strength: Ultimate (UTS), MPa 410
580
Tensile Strength: Yield (Proof), MPa 230
440

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
49
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.6
Embodied Energy, MJ/kg 32
21
Embodied Water, L/kg 120
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 16 to 19
0
Iron (Fe), % 77.9 to 83.9
96.7 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0.1 to 1.0
0 to 0.050
Vanadium (V), % 0
0 to 0.1