MakeItFrom.com
Menu (ESC)

S43037 Stainless Steel vs. SAE-AISI 8622 Steel

Both S43037 stainless steel and SAE-AISI 8622 steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S43037 stainless steel and the bottom bar is SAE-AISI 8622 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
26
Fatigue Strength, MPa 160
240
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 260
320
Tensile Strength: Ultimate (UTS), MPa 410
500
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
38
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.5
Embodied Energy, MJ/kg 32
20
Embodied Water, L/kg 120
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 6.7
10
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.030
0.2 to 0.25
Chromium (Cr), % 16 to 19
0.4 to 0.6
Iron (Fe), % 77.9 to 83.9
96.9 to 98
Manganese (Mn), % 0 to 1.0
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0.1 to 1.0
0