MakeItFrom.com
Menu (ESC)

S43037 Stainless Steel vs. C61800 Bronze

S43037 stainless steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S43037 stainless steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25
26
Fatigue Strength, MPa 160
190
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 77
89
Shear Modulus, GPa 77
44
Shear Strength, MPa 260
310
Tensile Strength: Ultimate (UTS), MPa 410
740
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 880
220
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 25
64
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
13
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
28
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.3
3.1
Embodied Energy, MJ/kg 32
52
Embodied Water, L/kg 120
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
150
Resilience: Unit (Modulus of Resilience), kJ/m3 130
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 15
25
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
18
Thermal Shock Resistance, points 14
26

Alloy Composition

Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 19
0
Copper (Cu), % 0
86.9 to 91
Iron (Fe), % 77.9 to 83.9
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.1 to 1.0
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5