MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. ACI-ASTM CA40 Steel

Both S43940 stainless steel and ACI-ASTM CA40 steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
310
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
10
Fatigue Strength, MPa 180
460
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 490
910
Tensile Strength: Yield (Proof), MPa 280
860

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 540
390
Maximum Temperature: Mechanical, °C 890
750
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1500
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 38
28
Embodied Water, L/kg 120
100

Common Calculations

PREN (Pitting Resistance) 18
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
89
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1910
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
33
Strength to Weight: Bending, points 18
27
Thermal Diffusivity, mm2/s 6.8
6.7
Thermal Shock Resistance, points 18
33

Alloy Composition

Carbon (C), % 0 to 0.030
0.2 to 0.4
Chromium (Cr), % 17.5 to 18.5
11.5 to 14
Iron (Fe), % 78.2 to 82.1
81.5 to 88.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.040
Titanium (Ti), % 0.1 to 0.6
0