MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. EN 1.0411 Steel

Both S43940 stainless steel and EN 1.0411 steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is EN 1.0411 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
12 to 26
Fatigue Strength, MPa 180
200 to 320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 310
300 to 350
Tensile Strength: Ultimate (UTS), MPa 490
420 to 570
Tensile Strength: Yield (Proof), MPa 280
270 to 480

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
52
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 38
18
Embodied Water, L/kg 120
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
43 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
190 to 610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
15 to 20
Strength to Weight: Bending, points 18
16 to 20
Thermal Diffusivity, mm2/s 6.8
14
Thermal Shock Resistance, points 18
13 to 18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0.18 to 0.22
Chromium (Cr), % 17.5 to 18.5
0
Iron (Fe), % 78.2 to 82.1
98.7 to 99.1
Manganese (Mn), % 0 to 1.0
0.7 to 0.9
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0.1 to 0.6
0