MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. SAE-AISI 50B60 Steel

Both S43940 stainless steel and SAE-AISI 50B60 steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is SAE-AISI 50B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
12 to 20
Fatigue Strength, MPa 180
240 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 310
380
Tensile Strength: Ultimate (UTS), MPa 490
610 to 630
Tensile Strength: Yield (Proof), MPa 280
350 to 530

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
410
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
45
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 38
19
Embodied Water, L/kg 120
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
71 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 200
330 to 750
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
22 to 23
Strength to Weight: Bending, points 18
20 to 21
Thermal Diffusivity, mm2/s 6.8
12
Thermal Shock Resistance, points 18
20

Alloy Composition

Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0 to 0.030
0.56 to 0.64
Chromium (Cr), % 17.5 to 18.5
0.4 to 0.6
Iron (Fe), % 78.2 to 82.1
97.3 to 98.1
Manganese (Mn), % 0 to 1.0
0.75 to 1.0
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040
Titanium (Ti), % 0.1 to 0.6
0