MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. C66900 Brass

S43940 stainless steel belongs to the iron alloys classification, while C66900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
1.1 to 26
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 76
65 to 100
Shear Modulus, GPa 77
45
Shear Strength, MPa 310
290 to 440
Tensile Strength: Ultimate (UTS), MPa 490
460 to 770
Tensile Strength: Yield (Proof), MPa 280
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
150
Melting Completion (Liquidus), °C 1440
860
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 200
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
15 to 26
Strength to Weight: Bending, points 18
16 to 23
Thermal Shock Resistance, points 18
14 to 23

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 18.5
0
Copper (Cu), % 0
62.5 to 64.5
Iron (Fe), % 78.2 to 82.1
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
11.5 to 12.5
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.1 to 0.6
0
Zinc (Zn), % 0
22.5 to 26
Residuals, % 0
0 to 0.2