MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. C90500 Gun Metal

S43940 stainless steel belongs to the iron alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
20
Fatigue Strength, MPa 180
90
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 490
320
Tensile Strength: Yield (Proof), MPa 280
160

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 25
75
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
35
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 38
59
Embodied Water, L/kg 120
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
54
Resilience: Unit (Modulus of Resilience), kJ/m3 200
110
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 6.8
23
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 18.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 78.2 to 82.1
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0.1 to 0.6
0
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3