MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. S32050 Stainless Steel

Both S43940 stainless steel and S32050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 66% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 21
46
Fatigue Strength, MPa 180
340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
81
Shear Strength, MPa 310
540
Tensile Strength: Ultimate (UTS), MPa 490
770
Tensile Strength: Yield (Proof), MPa 280
370

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 540
440
Maximum Temperature: Mechanical, °C 890
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
6.0
Embodied Energy, MJ/kg 38
81
Embodied Water, L/kg 120
210

Common Calculations

PREN (Pitting Resistance) 18
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
290
Resilience: Unit (Modulus of Resilience), kJ/m3 200
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 6.8
3.3
Thermal Shock Resistance, points 18
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 18.5
22 to 24
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 78.2 to 82.1
43.1 to 51.8
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0
20 to 23
Niobium (Nb), % 0.3 to 0.6
0
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0.1 to 0.6
0