MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. S43932 Stainless Steel

Both S43940 stainless steel and S43932 stainless steel are iron alloys. Both are furnished in the annealed condition. Their average alloy composition is basically identical.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
25
Fatigue Strength, MPa 180
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 76
78
Shear Modulus, GPa 77
77
Shear Strength, MPa 310
300
Tensile Strength: Ultimate (UTS), MPa 490
460
Tensile Strength: Yield (Proof), MPa 280
230

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 540
570
Maximum Temperature: Mechanical, °C 890
890
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
23
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 38
40
Embodied Water, L/kg 120
120

Common Calculations

PREN (Pitting Resistance) 18
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
96
Resilience: Unit (Modulus of Resilience), kJ/m3 200
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 6.8
6.3
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 18.5
17 to 19
Iron (Fe), % 78.2 to 82.1
76.7 to 83
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0.3 to 0.6
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.1 to 0.6
0.2 to 0.75