MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. 443.0 Aluminum

S44330 stainless steel belongs to the iron alloys classification, while 443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
41
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 25
5.6
Fatigue Strength, MPa 160
55
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 280
96
Tensile Strength: Ultimate (UTS), MPa 440
150
Tensile Strength: Yield (Proof), MPa 230
65

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
130

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 140
30
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 16
16
Strength to Weight: Bending, points 17
23
Thermal Diffusivity, mm2/s 5.7
61
Thermal Shock Resistance, points 16
6.9

Alloy Composition

Aluminum (Al), % 0
90.7 to 95.5
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 23
0 to 0.25
Copper (Cu), % 0.3 to 0.8
0 to 0.6
Iron (Fe), % 72.5 to 79.7
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.8
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35