MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. 6005 Aluminum

S44330 stainless steel belongs to the iron alloys classification, while 6005 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
90 to 95
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 25
9.5 to 17
Fatigue Strength, MPa 160
55 to 95
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 280
120 to 210
Tensile Strength: Ultimate (UTS), MPa 440
190 to 310
Tensile Strength: Yield (Proof), MPa 230
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 21
180 to 200
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
54
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
180

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 140
77 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 16
20 to 32
Strength to Weight: Bending, points 17
28 to 38
Thermal Diffusivity, mm2/s 5.7
74 to 83
Thermal Shock Resistance, points 16
8.6 to 14

Alloy Composition

Aluminum (Al), % 0
97.5 to 99
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 23
0 to 0.1
Copper (Cu), % 0.3 to 0.8
0 to 0.1
Iron (Fe), % 72.5 to 79.7
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.6 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15