MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. ASTM A182 Grade F11 Class 2

Both S44330 stainless steel and ASTM A182 grade F11 class 2 are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is ASTM A182 grade F11 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
22
Fatigue Strength, MPa 160
220
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 280
340
Tensile Strength: Ultimate (UTS), MPa 440
540
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 990
430
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 40
21
Embodied Water, L/kg 140
53

Common Calculations

PREN (Pitting Resistance) 22
3.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 5.7
11
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.025
0.1 to 0.2
Chromium (Cr), % 20 to 23
1.0 to 1.5
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
95.8 to 97.7
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0
0.44 to 0.65
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0.5 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.8
0