MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. AWS E2594

Both S44330 stainless steel and AWS E2594 are iron alloys. They have 82% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is AWS E2594.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 25
17
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
81
Tensile Strength: Ultimate (UTS), MPa 440
850

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 10
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
22
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 40
60
Embodied Water, L/kg 140
190

Common Calculations

PREN (Pitting Resistance) 22
43
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
30
Strength to Weight: Bending, points 17
25
Thermal Diffusivity, mm2/s 5.7
4.3
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.040
Chromium (Cr), % 20 to 23
24 to 27
Copper (Cu), % 0.3 to 0.8
0 to 0.75
Iron (Fe), % 72.5 to 79.7
53.8 to 63.8
Manganese (Mn), % 0 to 1.0
0.5 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
8.0 to 10.5
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.8
0