MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. EN 1.0213 Steel

Both S44330 stainless steel and EN 1.0213 steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is EN 1.0213 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
92 to 120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
12 to 25
Fatigue Strength, MPa 160
160 to 240
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 280
230 to 270
Tensile Strength: Ultimate (UTS), MPa 440
320 to 430
Tensile Strength: Yield (Proof), MPa 230
220 to 330

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
53
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
18
Embodied Water, L/kg 140
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
33 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120 to 300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
11 to 15
Strength to Weight: Bending, points 17
13 to 16
Thermal Diffusivity, mm2/s 5.7
14
Thermal Shock Resistance, points 16
10 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.025
0.060 to 0.1
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
99.245 to 99.67
Manganese (Mn), % 0 to 1.0
0.25 to 0.45
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.8
0