MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. EN 1.4487 Stainless Steel

Both S44330 stainless steel and EN 1.4487 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is EN 1.4487 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
34
Fatigue Strength, MPa 160
210
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 440
560
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 560
420
Maximum Temperature: Mechanical, °C 990
960
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 22
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 5.7
4.2
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 20 to 23
18 to 20
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
64.7 to 72.9
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0.12 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.8
0