MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. EN 1.5525 Steel

Both S44330 stainless steel and EN 1.5525 steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
11 to 21
Fatigue Strength, MPa 160
210 to 310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 280
310 to 350
Tensile Strength: Ultimate (UTS), MPa 440
440 to 1440
Tensile Strength: Yield (Proof), MPa 230
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
50
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
19
Embodied Water, L/kg 140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 140
240 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
16 to 51
Strength to Weight: Bending, points 17
16 to 36
Thermal Diffusivity, mm2/s 5.7
13
Thermal Shock Resistance, points 16
13 to 42

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.025
0.18 to 0.23
Chromium (Cr), % 20 to 23
0 to 0.3
Copper (Cu), % 0.3 to 0.8
0 to 0.25
Iron (Fe), % 72.5 to 79.7
97.7 to 98.9
Manganese (Mn), % 0 to 1.0
0.9 to 1.2
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.8
0