MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. EN 1.8519 Steel

Both S44330 stainless steel and EN 1.8519 steel are iron alloys. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is EN 1.8519 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
360
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
10
Fatigue Strength, MPa 160
630
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 280
710
Tensile Strength: Ultimate (UTS), MPa 440
1200
Tensile Strength: Yield (Proof), MPa 230
1030

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
450
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 40
26
Embodied Water, L/kg 140
58

Common Calculations

PREN (Pitting Resistance) 22
3.2
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
2790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
43
Strength to Weight: Bending, points 17
32
Thermal Diffusivity, mm2/s 5.7
11
Thermal Shock Resistance, points 16
35

Alloy Composition

Carbon (C), % 0 to 0.025
0.27 to 0.34
Chromium (Cr), % 20 to 23
2.3 to 2.7
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
95.7 to 97.1
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0 to 0.8
0
Vanadium (V), % 0
0.1 to 0.2