MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. SAE-AISI 1026 Steel

Both S44330 stainless steel and SAE-AISI 1026 steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
17 to 27
Fatigue Strength, MPa 160
200 to 310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 280
320 to 340
Tensile Strength: Ultimate (UTS), MPa 440
500 to 550
Tensile Strength: Yield (Proof), MPa 230
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
52
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
18
Embodied Water, L/kg 140
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
200 to 580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
18 to 20
Strength to Weight: Bending, points 17
18 to 19
Thermal Diffusivity, mm2/s 5.7
14
Thermal Shock Resistance, points 16
16 to 18

Alloy Composition

Carbon (C), % 0 to 0.025
0.22 to 0.28
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
98.7 to 99.18
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0 to 0.8
0