MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. SAE-AISI 8655 Steel

Both S44330 stainless steel and SAE-AISI 8655 steel are iron alloys. Both are furnished in the annealed condition. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is SAE-AISI 8655 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
23
Fatigue Strength, MPa 160
290
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 280
390
Tensile Strength: Ultimate (UTS), MPa 440
620
Tensile Strength: Yield (Proof), MPa 230
410

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 40
20
Embodied Water, L/kg 140
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 5.7
10
Thermal Shock Resistance, points 16
18

Alloy Composition

Carbon (C), % 0 to 0.025
0.51 to 0.59
Chromium (Cr), % 20 to 23
0.4 to 0.6
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
96.4 to 97.6
Manganese (Mn), % 0 to 1.0
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.8
0