MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. C68300 Brass

S44330 stainless steel belongs to the iron alloys classification, while C68300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 25
15
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 79
60
Shear Modulus, GPa 78
40
Shear Strength, MPa 280
260
Tensile Strength: Ultimate (UTS), MPa 440
430
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 10
20

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 140
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
56
Resilience: Unit (Modulus of Resilience), kJ/m3 140
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 16
15
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 5.7
38
Thermal Shock Resistance, points 16
14

Alloy Composition

Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.3 to 0.8
59 to 63
Iron (Fe), % 72.5 to 79.7
0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.050 to 0.2
Titanium (Ti), % 0 to 0.8
0
Zinc (Zn), % 0
34.2 to 40.4
Residuals, % 0
0 to 0.5