MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. S32654 Stainless Steel

Both S44330 stainless steel and S32654 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 65% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 25
45
Fatigue Strength, MPa 160
450
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
82
Shear Strength, MPa 280
590
Tensile Strength: Ultimate (UTS), MPa 440
850
Tensile Strength: Yield (Proof), MPa 230
490

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 560
440
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.4
Embodied Energy, MJ/kg 40
87
Embodied Water, L/kg 140
220

Common Calculations

PREN (Pitting Resistance) 22
57
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
330
Resilience: Unit (Modulus of Resilience), kJ/m3 140
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
29
Strength to Weight: Bending, points 17
25
Thermal Diffusivity, mm2/s 5.7
2.9
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.020
Chromium (Cr), % 20 to 23
24 to 25
Copper (Cu), % 0.3 to 0.8
0.3 to 0.6
Iron (Fe), % 72.5 to 79.7
38.3 to 45.3
Manganese (Mn), % 0 to 1.0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0.45 to 0.55
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0 to 0.8
0