MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. S40945 Stainless Steel

Both S44330 stainless steel and S40945 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
25
Fatigue Strength, MPa 160
160
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 79
69
Shear Modulus, GPa 78
75
Shear Strength, MPa 280
270
Tensile Strength: Ultimate (UTS), MPa 440
430
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 560
450
Maximum Temperature: Mechanical, °C 990
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
26
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
8.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 40
31
Embodied Water, L/kg 140
94

Common Calculations

PREN (Pitting Resistance) 22
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
89
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
15
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 5.7
6.9
Thermal Shock Resistance, points 16
15

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 20 to 23
10.5 to 11.7
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
85.1 to 89.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0 to 0.8
0.18 to 0.4
Nitrogen (N), % 0 to 0.025
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.8
0.050 to 0.2