MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. S82031 Stainless Steel

Both S44330 stainless steel and S82031 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
39
Fatigue Strength, MPa 160
490
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 280
540
Tensile Strength: Ultimate (UTS), MPa 440
780
Tensile Strength: Yield (Proof), MPa 230
570

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 560
430
Maximum Temperature: Mechanical, °C 990
980
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 22
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
280
Resilience: Unit (Modulus of Resilience), kJ/m3 140
820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
28
Strength to Weight: Bending, points 17
24
Thermal Diffusivity, mm2/s 5.7
3.9
Thermal Shock Resistance, points 16
22

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.050
Chromium (Cr), % 20 to 23
19 to 22
Copper (Cu), % 0.3 to 0.8
0 to 1.0
Iron (Fe), % 72.5 to 79.7
68 to 78.3
Manganese (Mn), % 0 to 1.0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0
2.0 to 4.0
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0.14 to 0.24
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0 to 0.8
0