MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. ASTM A387 Grade 21 Steel

Both S44535 stainless steel and ASTM A387 grade 21 steel are iron alloys. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
21
Fatigue Strength, MPa 210
160 to 250
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
74
Shear Strength, MPa 290
310 to 370
Tensile Strength: Ultimate (UTS), MPa 450
500 to 590
Tensile Strength: Yield (Proof), MPa 290
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 1000
480
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
41
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.1
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.8
Embodied Energy, MJ/kg 34
23
Embodied Water, L/kg 140
62

Common Calculations

PREN (Pitting Resistance) 22
6.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
140 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
18 to 21
Strength to Weight: Bending, points 17
18 to 20
Thermal Diffusivity, mm2/s 5.6
11
Thermal Shock Resistance, points 15
14 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0.050 to 0.15
Chromium (Cr), % 20 to 24
2.8 to 3.3
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 73.2 to 79.6
94.4 to 96
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.025
Titanium (Ti), % 0.030 to 0.2
0