MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. EN 1.4035 Stainless Steel

Both S44535 stainless steel and EN 1.4035 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
18
Fatigue Strength, MPa 210
250
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 290
430
Tensile Strength: Ultimate (UTS), MPa 450
690
Tensile Strength: Yield (Proof), MPa 290
400

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 450
380
Maximum Temperature: Mechanical, °C 1000
760
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.0
Embodied Energy, MJ/kg 34
27
Embodied Water, L/kg 140
100

Common Calculations

PREN (Pitting Resistance) 22
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
420
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 5.6
7.8
Thermal Shock Resistance, points 15
25

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0.43 to 0.5
Chromium (Cr), % 20 to 24
12.5 to 14
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 73.2 to 79.6
82.1 to 86.9
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0.15 to 0.35
Titanium (Ti), % 0.030 to 0.2
0