MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. CC483K Bronze

S44535 stainless steel belongs to the iron alloys classification, while CC483K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
97
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
6.4
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 450
310
Tensile Strength: Yield (Proof), MPa 290
170

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
990
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 21
68
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.4
3.8
Embodied Energy, MJ/kg 34
62
Embodied Water, L/kg 140
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
17
Resilience: Unit (Modulus of Resilience), kJ/m3 200
130
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
9.9
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 5.6
21
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
85 to 89
Iron (Fe), % 73.2 to 79.6
0 to 0.2
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0.3 to 0.8
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.050
0 to 0.6
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
0 to 0.5