MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. CC492K Bronze

S44535 stainless steel belongs to the iron alloys classification, while CC492K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
78
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
14
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 450
280
Tensile Strength: Yield (Proof), MPa 290
150

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1390
900
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 21
73
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.4
3.4
Embodied Energy, MJ/kg 34
54
Embodied Water, L/kg 140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 200
100
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
8.7
Strength to Weight: Bending, points 17
11
Thermal Diffusivity, mm2/s 5.6
23
Thermal Shock Resistance, points 15
10

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
83 to 89
Iron (Fe), % 73.2 to 79.6
0 to 0.2
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.020
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
1.5 to 3.0