MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C14700 Copper

S44535 stainless steel belongs to the iron alloys classification, while C14700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
9.1 to 35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 290
160 to 190
Tensile Strength: Ultimate (UTS), MPa 450
240 to 320
Tensile Strength: Yield (Proof), MPa 290
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
370
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
95
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
96

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 34
41
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 200
31 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
7.3 to 10
Strength to Weight: Bending, points 17
9.5 to 12
Thermal Diffusivity, mm2/s 5.6
110
Thermal Shock Resistance, points 15
8.4 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
99.395 to 99.798
Iron (Fe), % 73.2 to 79.6
0
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.050
0.0020 to 0.0050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0.2 to 0.5
Titanium (Ti), % 0.030 to 0.2
0
Residuals, % 0
0 to 0.1