MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C23000 Brass

S44535 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
2.9 to 47
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 77
48 to 87
Shear Modulus, GPa 78
42
Shear Strength, MPa 290
220 to 340
Tensile Strength: Ultimate (UTS), MPa 450
280 to 590
Tensile Strength: Yield (Proof), MPa 290
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1390
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
37
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
39

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 34
43
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 200
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 16
8.9 to 19
Strength to Weight: Bending, points 17
11 to 18
Thermal Diffusivity, mm2/s 5.6
48
Thermal Shock Resistance, points 15
9.4 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
84 to 86
Iron (Fe), % 73.2 to 79.6
0 to 0.050
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2