MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C41300 Brass

S44535 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
2.0 to 44
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 77
53 to 88
Shear Modulus, GPa 78
42
Shear Strength, MPa 290
230 to 370
Tensile Strength: Ultimate (UTS), MPa 450
300 to 630
Tensile Strength: Yield (Proof), MPa 290
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
31

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 34
44
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
9.6 to 20
Strength to Weight: Bending, points 17
11 to 19
Thermal Diffusivity, mm2/s 5.6
40
Thermal Shock Resistance, points 15
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
89 to 93
Iron (Fe), % 73.2 to 79.6
0 to 0.050
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5