MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C68400 Brass

S44535 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
18
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 78
41
Shear Strength, MPa 290
330
Tensile Strength: Ultimate (UTS), MPa 450
540
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1000
130
Melting Completion (Liquidus), °C 1430
840
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 21
66
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
87
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
99

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 34
47
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
81
Resilience: Unit (Modulus of Resilience), kJ/m3 200
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 5.6
21
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
59 to 64
Iron (Fe), % 73.2 to 79.6
0 to 1.0
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 0.8
0.2 to 1.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.050
0.030 to 0.3
Silicon (Si), % 0 to 0.5
1.5 to 2.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5